Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 93
Filtrar
1.
Mol Med ; 29(1): 74, 2023 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-37308845

RESUMO

BACKGROUND: Hemophilia A (HA) is an X-linked monogenic disorder caused by deficiency of the factor VIII (FVIII) gene in the intrinsic coagulation cascade. The current protein replacement therapy (PRT) of HA has many limitations including short term effectiveness, high cost, and life-time treatment requirement. Gene therapy has become a promising treatment for HA. Orthotopic functional FVIII biosynthesis is critical to its coagulation activities. METHODS: To investigate targeted FVIII expression, we developed a series of advanced lentiviral vectors (LVs) carrying either a universal promoter (EF1α) or a variety of tissue-specific promoters, including endothelial-specific (VEC), endothelial and epithelial-specific (KDR), and megakaryocyte-specific (Gp and ITGA) promoters. RESULTS: To examine tissue specificity, the expression of a B-domain deleted human F8 (F8BDD) gene was tested in human endothelial and megakaryocytic cell lines. Functional assays demonstrated FVIII activities of LV-VEC-F8BDD and LV-ITGA-F8BDD in the therapeutic range in transduced endothelial and megakaryocytic cells, respectively. In F8 knockout mice (F8 KO mice, F8null mice), intravenous (iv) injection of LVs illustrated different degrees of phenotypic correction as well as anti-FVIII immune response for the different vectors. The iv delivery of LV-VEC-F8BDD and LV-Gp-F8BDD achieved 80% and 15% therapeutic FVIII activities over 180 days, respectively. Different from the other LV constructs, the LV-VEC-F8BDD displayed a low FVIII inhibitory response in the treated F8null mice. CONCLUSIONS: The LV-VEC-F8BDD exhibited high LV packaging and delivery efficiencies, with endothelial specificity and low immunogenicity in the F8null mice, thus has a great potential for clinical applications.


Assuntos
Fator VIII , Hemofilia A , Humanos , Animais , Camundongos , Coagulação Sanguínea , Linhagem Celular , Terapia Genética , Camundongos Knockout
2.
Mol Cancer ; 22(1): 3, 2023 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-36617554

RESUMO

BACKGROUND: This study aimed to validate whether infusion of GD2-specific fourth-generation safety-designed chimeric antigen receptor (4SCAR)-T cells is safe and whether CAR-T cells exert anti-glioblastoma (GBM) activity. METHODS: A total of eight patients with GD2-positive GBM were enrolled and infused with autologous GD2-specific 4SCAR-T cells, either through intravenous administration alone or intravenous combined with intracavitary administration. RESULTS: 4SCAR-T cells expanded for 1-3 weeks and persisted at a low frequency in peripheral blood. Of the eight evaluable patients, four showed a partial response for 3 to 24 months, three had progressive disease for 6 to 23 months, and one had stable disease for 4 months after infusion. For the entire cohort, the median overall survival was 10 months from the infusion. GD2 antigen loss and infiltrated T cells were observed in the tumor resected after infusion. CONCLUSION: Both single and combined infusions of GD2-specific 4SCAR-T cells in targeting GBM were safe and well tolerated, with no severe adverse events. In addition, GD2-specific 4SCAR-T cells partially mediate antigen loss and activate immune responses in the tumor microenvironment. Validation of our findings in a larger prospective trial is warranted. TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT03170141 . Registered 30 May 2017.


Assuntos
Glioblastoma , Receptores de Antígenos Quiméricos , Humanos , Glioblastoma/tratamento farmacológico , Imunoterapia Adotiva/efeitos adversos , Estudos Prospectivos , Receptores de Antígenos de Linfócitos T , Receptores de Antígenos Quiméricos/genética , Linfócitos T , Microambiente Tumoral
3.
Gene Ther ; 30(1-2): 18-30, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-35790794

RESUMO

X-linked adrenoleukodystrophy (ALD) is a genetic disorder of the ABCD1 gene. We aimed to treat ALD via direct intracerebral injection of lentiviral ABCD1 (LV.ABCD1). Lentiviral vectors (LVs) were injected into the brain of wild type mice to access toxicities and biodistribution. Confocal microscopy illustrated supraphysiological ABCD1 expression surrounding the injection sites, and LVs were also detected in the opposite site of the unilaterally injected brain. In multi-site bilateral injections (4, 6, 8, and 9 sites), LV.ABCD1 transduced most brain regions including the cerebellum. Investigation of neuronal loss, astrogliosis and microglia activation did not detect abnormality. For efficacy evaluation, a novel ALD knockout (KO) mouse model was established by deleting exons 3 to 9 of the ABCD1 gene based on CRISPR/Cas9 gene editing. The KO mice showed behavioral deficit in open-field test (OFT) and reduced locomotor activities in rotarod test at 6 and 7 months of age, respectively. We treated 3-month-old KO mice with bilateral LV.ABCD1 injections into the external capsule and thalamus. ABCD1 expression was detected 15 days later, and the impaired motor ability was gradually alleviated. Our studies established an early onset ALD model and illustrated neurological improvement after LV.ABCD1 intracerebral injection without immunopathological toxicity.


Assuntos
Adrenoleucodistrofia , Animais , Camundongos , Adrenoleucodistrofia/genética , Adrenoleucodistrofia/terapia , Adrenoleucodistrofia/metabolismo , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Distribuição Tecidual , Camundongos Knockout , Terapia Genética , Membro 1 da Subfamília D de Transportadores de Cassetes de Ligação de ATP/genética , Membro 1 da Subfamília D de Transportadores de Cassetes de Ligação de ATP/metabolismo
4.
Hum Gene Ther ; 34(1-2): 19-29, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36274229

RESUMO

Chronic granulomatous disease (CGD) is a rare congenital immunodeficiency characterized by a defect in nicotinamide adenine dinucleotide phosphate oxidase required for phagocytosis. Hematopoietic stem cell (HSC) transplantation is currently the only curative treatment, but it is ladened with morbidities and mortality. Gene therapy is a promising treatment for CGD. However, if not properly designed, the gene therapy approach may not be successful. We engineered lentiviral vectors (LVs) carrying a universal promoter (EF1a) and two myeloid-specific promoters (miR223 and CD68) to drive the expression of green fluorescence protein (GFP) or CYBB, one of the key defective genes causing CGD. Tissue-specific LV expression was investigated in vitro and in a CGD mouse model. We compared GFP expression in both myeloid differentiated and undifferentiated HSCs. The CGD mice were transplanted with LV-modified mouse HSCs to investigate expression of CYBB and restoration of reactive oxygen species. The LV promoters were further compared under low and high-transgenic conditions to assess safety and therapeutic efficacy. A pneumonia disease model based on pathogenic Staphylococcus aureus challenge was established to assess the survival rate and body weight change. All three promoters demonstrated ectopic CYBB expression in vitro and in vivo. The EF1a promoter showed the highest expression of GFP or CYBB in transduced cells, including HSCs without cytotoxicity, whereas the LV-miR223 showed the highest transgene delivery efficiency with high myeloid specificity. Importantly, under low-transgenic condition, only the LV-EF1a-CYBB showed high antibacterial activity in vivo.


Assuntos
Doença Granulomatosa Crônica , Transplante de Células-Tronco Hematopoéticas , MicroRNAs , Camundongos , Animais , Doença Granulomatosa Crônica/genética , Doença Granulomatosa Crônica/terapia , NADPH Oxidases/genética , NADPH Oxidases/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Terapia Genética , Vetores Genéticos/genética , MicroRNAs/genética
5.
Expert Rev Hematol ; 15(5): 431-441, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35523283

RESUMO

INTRODUCTION: Hemophilia A (HA) or B (HB) is an X-linked recessive disorder caused by a defect in the factor VIII (FVIII) or factor IX (FIX) gene which leads to the dysfunction of blood coagulation. Protein replacement therapy (PRT) uses recombinant proteins and plasma-derived products, which incurs high cost and inconvenience requiring routine intravenous infusions and life-time treatment. Understanding of detailed molecular mechanisms on FVIII gene function could provide innovative solutions to amend this disorder. In recent decades, gene therapeutics have advanced rapidly and a one-time cure solution has been proposed. AREAS COVERED: This review summarizes current understanding of molecular pathways involved in blood coagulation, with emphasis on FVIII's functional role. The existing knowledge and challenges on FVIII gene expression, from transcription, translation, post-translational modification including glycosylation to protein processing and secretion, and co-factor interactions are deciphered and potential molecular interventions discussed. EXPERT OPINION: This article reviews the potential treatment targets for HA and HB, including antibodies, small molecules and gene therapeutics, based on molecular mechanisms of FVIII biosynthesis, and further, assessing the pros and cons of these various treatment strategies. Understanding detailed FVIII protein synthesis and secretory pathways could provide exciting opportunities in identifying novel therapeutics to ameliorate hemophilia state.


Assuntos
Hemofilia A , Hemofilia B , Proteínas Recombinantes , Fator IX/genética , Fator IX/uso terapêutico , Fator VIII/genética , Fator VIII/uso terapêutico , Hemofilia A/genética , Hemofilia A/terapia , Hemofilia B/genética , Hemofilia B/terapia , Humanos , Terapia de Alvo Molecular/tendências , Proteínas Recombinantes/uso terapêutico
7.
J Cancer Res Clin Oncol ; 148(10): 2643-2652, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34724115

RESUMO

PURPOSE: This study aimed to evaluate the safety and efficacy of chimeric antigen receptor (CAR) disialoganglioside 2 (GD2)-specific (4SCAR-GD2) T cells for treatment of refractory and/or recurrent neuroblastoma (NB) in pediatric patients. EXPERIMENTAL DESIGN: A phase I clinical study using 4SCAR-GD2 T cells for the treatment of NB in pediatric patients was conducted. This study was registered at www. CLINICALTRIALS: gov (NCT02765243). A lentiviral CAR with the signaling domains of CD28/4-1BB/CD3ζ-iCasp9 was transduced into activated T cells. The response to 4SCAR-GD2 T-cell treatment, and 4SCAR-GD2 T-cell expansion and persistence in patients were evaluated. Toxicities were determined based on the National Cancer Institute Common Terminology Criteria for Adverse Events (CTCAE) v4.03. RESULTS: Twelve patients were enrolled and finally ten patients were included in this clinical trial which started from January 1, 2016, to August 1, 2017. These patients had progressive disease (PD) before CAR T-cell infusion. After 4SCAR-GD2 T-cell treatment, 6 (6/10) had stable disease (SD) at 6 months, and 4 (4/10) remained SD at 1 year and alive after 3-4 years of follow-up. Six patients died due to disease progression by the end of July 1, 2020. The median overall survival (OS) time was 25 months (95% CI, 0.00-59.43), and the median progression-free survival (PFS) time was 8 months (95% CI, 0.25-15.75). Grade 3 or 4 hematological toxicities were the common adverse events frequently occurred after fludarabine and cyclophosphamide (Flu/cy) chemotherapy. Grade 1-2 toxicities such as cytokine release syndrome (CRS) and neuropathic pain were common, but were transient and mild. CONCLUSIONS: The 4SCAR-GD2 T-cell therapy demonstrated antitumor effect and manageable toxicities, indicating its potential to benefit children with refractory and/or recurrent NB.


Assuntos
Neuroblastoma , Receptores de Antígenos Quiméricos , Criança , Gangliosídeos , Humanos , Imunoterapia Adotiva/efeitos adversos , Recidiva Local de Neoplasia/terapia , Neuroblastoma/patologia , Neuroblastoma/terapia , Linfócitos T
8.
J Biol Chem ; 297(6): 101397, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34774524

RESUMO

Hemophilia A (HA) is a bleeding disorder caused by deficiency of the coagulation factor VIII (F8). F8 replacement is standard of care, whereas gene therapy (F8 gene) for HA is an attractive investigational approach. However, the large size of the F8 gene and the immunogenicity of the product present challenges in development of the F8 gene therapy. To resolve these problems, we synthesized a shortened F8 gene (F8-BDD) and cloned it into a lentiviral vector (LV). The F8-BDD produced mainly short cleaved inactive products in LV-transduced cells. To improve F8 functionality, we designed two novel F8-BDD genes, one with an insertion of eight specific N-glycosylation sites (F8-N8) and another which restored all N-glycosylation sites (F8-299) in the B domain. Although the overall protein expression was reduced, high coagulation activity (>100-fold) was detected in the supernatants of LV-F8-N8- and LV-F8-299-transduced cells. Protein analysis of F8 and the procoagulation cofactor, von Willebrand Factor, showed enhanced interaction after restoration of B domain glycosylation using F8-299. HA mouse hematopoietic stem cell transplantation studies illustrated that the bleeding phenotype was corrected after LV-F8-N8 or -299 gene transfer into the hematopoietic stem cells. Importantly, the F8-299 modification markedly reduced immunogenicity of the F8 protein in these HA mice. In conclusion, the modified F8-299 gene could be efficiently packaged into LV and, although with reduced expression, produced highly stable and functional F8 protein that corrected the bleeding phenotype without inhibitory immunogenicity. We anticipate that these results will be beneficial in the development of gene therapies against HA.


Assuntos
Fator VIII , Terapia Genética , Vetores Genéticos , Hemofilia A , Lentivirus , Transdução Genética , Fator VIII/biossíntese , Fator VIII/genética , Hemofilia A/genética , Hemofilia A/metabolismo , Hemofilia A/terapia , Humanos , Células K562
9.
Vaccines (Basel) ; 9(8)2021 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-34451952

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-specific cellular immune response has been shown to play a critical role in preventing severe illness or death in patients infected with SARS-CoV-2 or its variants. Given the multiple T-cell epitopes shared by wild-type virus and its variants, we hypothesized that vaccines that target multiple T-cell epitopes of SARS-CoV-2 may provide a "universal protection" against the wild-type virus as well as its variants, even the heavily mutated ones. To test this, we assessed SARS-CoV-2-specific T-cell precursors in healthy individuals using overlapping peptide pools of SARS-CoV-2 structural and functional proteins, including spike (S), membrane (M), envelope (E), nucleocapsid (N), and protease (P) proteins as target antigens. Diverse T-cell precursor frequencies specific to these viral antigens were detected in healthy individuals, including high, medium, low, and no responders. This was further confirmed by efficient induction of anti-SARS-CoV-2 T-cell immune responses using ex vivo dendritic cell (DC)/T cell coculture. The results demonstrated T-cell responses consistent with the precursor frequencies of each of the individuals tested. Importantly, the combination of all five viral peptide pools induced the strongest cellular immune response, and further, after a DC-peptides re-stimulation, even the no responders developed an increased anti-viral T-cell response. These analyses recapitulate the presence of a broad anti-SARS-CoV-2 cellular immunity even in an immune naïve population, which could be enhanced by antigen presenting cells presenting the overlapping antigenic peptides. Given the critical role of cellular immunity in COVID-19 protection, these results have important implications for vaccine design and immunotherapy in fighting SARS-CoV-2 and its variants.

11.
Vet Immunol Immunopathol ; 232: 110169, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33387703

RESUMO

BACKGROUND: Immune-targeted therapies are being successfully implemented into cancer clinical practice. In particular checkpoint inhibitors are employed to modulate the immune microenvironment of solid tumors. We sought to determine the expression of PD-L1, HVEM, and B7H3 in human and canine osteosarcoma, and correlate expression with clinical features and tumor infiltrating lymphocytes in naturally-occurring canine osteosarcoma. METHODS: Flow cytometry was used to measure ligand surface expression of five human and three canine cell lines. Immunohistochemistry was utilized for expression of ligands and lymphocyte markers in thirty-seven treatment-naïve canine osteosarcoma patients. RESULTS: All cell lines expressed all three ligands at variable levels in both species. Metastatic lesions were associated with higher expression of all three ligands in patient tumor samples. PD-L1 expression strongly correlated with B7H3 and HVEM expression, while HVEM and B7H3 were weakly correlated. Whereas peritumoral T-cell expression positively correlated with PD-L1 and HVEM tumor expression, the presence of T-cells intratumorally were rare. Furthermore, intratumor penetration by T-cells was greatest in metastatic lesions, despite log-fold increases in peritumoral T-cells. In summary, PD-L1, HVEM, and B7H3 are expressed in osteosarcoma, with metastatic disease lesions expressing higher levels. We show for the first time that these ligands expressed on osteosarcoma cells positively correlate with each other and the presence of peritumoral T cell infiltration. Furthermore, osteosarcoma appears to be an intratumoral immune desert with significant resistance to effector T cells. Multiple agents targeting checkpoints are in clinical practice, and may have immune modulating benefit in osteosarcoma.


Assuntos
Neoplasias Ósseas/veterinária , Doenças do Cão/imunologia , Linfócitos do Interstício Tumoral/imunologia , Osteossarcoma/veterinária , Linfócitos T/imunologia , Animais , Antígenos de Neoplasias/biossíntese , Antígenos B7/biossíntese , Antígeno B7-H1/biossíntese , Western Blotting/veterinária , Neoplasias Ósseas/imunologia , Neoplasias Ósseas/secundário , Linhagem Celular , Cães , Feminino , Citometria de Fluxo , Humanos , Masculino , Osteossarcoma/imunologia , Osteossarcoma/secundário , Reação em Cadeia da Polimerase em Tempo Real/veterinária , Membro 14 de Receptores do Fator de Necrose Tumoral/biossíntese
12.
Transl Oncol ; 14(2): 100971, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33321428

RESUMO

A novel disialoganglioside 2 (GD2)-specific chimeric antigen receptor (CAR)-modified T cell therapy against retinoblastoma (RB) were generated. GD2-CAR consists of a single-chain variable fragment (scFv) derived from a monoclonal antibody, hu3F8, that is linked with the cytoplasmic signaling domains of CD28, 41BB, a CD3ζ, and an inducible caspase 9 death fusion partner. GD2 antigen is highly expressed in Y79RB cell line and in several surgical RB tumor specimens. In vitro co-culture experiments revealed the effective killing of Y79RB cells by GD2-CAR T cells, but not by control CD19-CAR T cells. The killing activities of GD2-CAR T cells were diminished when repeatedly exposed to the tumor, due to an attenuated expression of GD2 antigen on tumor cells and upregulation of inhibitory molecules of the PD1 and PD-L1 axis in the CAR T cells and RB tumor cells respectively. This is the first report to describe the potential of GD2-CAR T cells as a promising therapeutic strategy for RB with the indication of potential benefit of combination therapy with immune checkpoint inhibitors.

13.
Front Immunol ; 11: 564099, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33329526

RESUMO

Background: The administration of second- or third-generation anti-CD19 chimeric antigen receptor (CAR) T cells has remarkably improved the survival of patients with relapsed or refractory B cell malignancies. However, there are limited clinical results from fourth-generation CAR-T cell therapy, and the factors affecting response rate and survival have not been fully determined. Methods: Lymphoma patients with progression or relapse after intensive treatments, including hematopoietic stem cell transplantation, and life expectancy >2 months were enrolled in the study. Peripheral lymphocytes were collected through apheresis, and magnetically selected T cells were lentivirally transduced with a 4th-generation CAR featuring an anti-CD19 CAR and the iCasp9 suicide switch (4SCAR19). The patients received 4SCAR19 T cell infusion after approximately seven days of expansion and a conditioning regimen comprising cyclophosphamide/fludarabine. The efficacy, safety, and risk factors were evaluated. Results: A total of 21 patients with relapsed/refractory B cell non-Hodgkin lymphoma were enrolled and received 4SCAR19 T cell infusions at a median dose of 8.9×105 CAR-T cells/kg. The overall response rate was 67% [95% confidence interval (CI), 43 to 85], with 43% of patients achieving a complete response and 24% having a partial response. The overall and complete response rates were 58 and 33% in the diffuse large B-cell lymphoma (DLBCL) group and 78 and 56% in the non-DLBCL group, respectively. The median overall survival was 23.8 months (95% CI, not reached), with a median follow-up of 13.7 months. Factors affecting overall survival were International Prognostic Index (IPI), disease type, and remission status after CAR-T cell treatment. The most common adverse events of grade 3 or 4 during treatment were neutropenia (76%), leukopenia (71%), and thrombocytopenia (29%). The incidence of cytokine release syndrome (CRS) was 14%, and all cases were grade 1. One patient developed grade 3 neurotoxicity. No deaths were attributed to infusion of 4SCAR19 T cells, CRS, or neurotoxicity. Conclusions: In this study, patients with relapsed or refractory B cell non-Hodgkin's lymphoma who received 4SCAR19 T cell therapy had durable responses and few of adverse events. The IPI model is suitable for evaluating the prognosis of patients receiving CAR-T cell therapy. Trial registration: Chinese Clinical Trial Registry (http://www.chictr.org.cn): ChiCTR-OOC-16007779.


Assuntos
Antígenos CD19/imunologia , Imunoterapia Adotiva/efeitos adversos , Imunoterapia Adotiva/métodos , Linfoma Difuso de Grandes Células B/mortalidade , Linfoma Difuso de Grandes Células B/terapia , Recidiva Local de Neoplasia/terapia , Receptores de Antígenos Quiméricos/imunologia , Adulto , Idoso , Síndrome da Liberação de Citocina/etiologia , Feminino , Seguimentos , Humanos , Leucopenia/etiologia , Masculino , Pessoa de Meia-Idade , Neutropenia/etiologia , Prognóstico , Intervalo Livre de Progressão , Fatores de Risco , Taxa de Sobrevida , Trombocitopenia/etiologia
14.
Stem Cell Res Ther ; 11(1): 481, 2020 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-33176890

RESUMO

BACKGROUND: Human induced pluripotent stem cells (hiPSCs) offer a renewable source of cells for the generation of hematopoietic cells for cell-based therapy, disease modeling, and drug screening. However, current serum/feeder-free differentiation protocols rely on the use of various cytokines, which makes the process very costly or the generation of embryoid bodies (EBs), which are labor-intensive and can cause heterogeneity during differentiation. Here, we report a simple feeder and serum-free monolayer protocol for efficient generation of iPSC-derived multipotent hematoendothelial progenitors (HEPs), which can further differentiate into endothelial and hematopoietic cells including erythroid and T lineages. METHODS: Formation of HEPs from iPSCs was initiated by inhibition of GSK3 signaling for 2 days followed by the addition of VEGF and FGF2 for 3 days. The HEPs were further induced toward mature endothelial cells (ECs) in an angiogenic condition and toward T cells by co-culturing with OP9-DL1 feeder cells. Endothelial-to-hematopoietic transition (EHT) of the HEPs was further promoted by supplementation with the TGF-ß signaling inhibitor. Erythroid differentiation was performed by culturing the hematopoietic stem/progenitor cells (HSPCs) in a three-stage erythroid liquid culture system. RESULTS: Our protocol significantly enhanced the number of KDR+ CD34+ CD31+ HEPs on day 5 of differentiation. Further culture of HEPs in angiogenic conditions promoted the formation of mature ECs, which expressed CD34, CD31, CD144, vWF, and ICAM-1, and could exhibit the formation of vascular-like network and acetylated low-density lipoprotein (Ac-LDL) uptake. In addition, the HEPs were differentiated into CD8+ T lymphocytes, which could be expanded up to 34-fold upon TCR stimulation. Inhibition of TGF-ß signaling at the HEP stage promoted EHT and yielded a large number of HSPCs expressing CD34 and CD43. Upon erythroid differentiation, these HSPCs were expanded up to 40-fold and displayed morphological changes following stages of erythroid development. CONCLUSION: This protocol offers an efficient and simple approach for the generation of multipotent HEPs and could be adapted to generate desired blood cells in large numbers for applications in basic research including developmental study, disease modeling, and drug screening as well as in regenerative medicine.


Assuntos
Células-Tronco Pluripotentes Induzidas , Diferenciação Celular , Células Endoteliais , Quinase 3 da Glicogênio Sintase , Células-Tronco Hematopoéticas , Humanos
15.
Bioengineered ; 11(1): 824-828, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32772769

RESUMO

CAR-T cells therapy can give rise to most common and concerning two side effects - cytokine release syndrome (CRS) and neurotoxicity. But in our CD19 CAR-T cells therapy clinical trial, we observed 1 out of 17 patients with B-cell acute lymphoblastic leukemia (B-ALL) developed acute myelofibrosis(AMF) after grade IV CRS post to the CD19 CAR-T cells therapy. This finding suggests that the CAR-T cells therapy may have rare and serious AMF, which we should pay important attention to. Trial registration:NCT02968472. Registered 18 November 2016 - Retrospectively registered, https://clinicaltrials.gov/ct2/show/NCT02968472.


Assuntos
Antígenos CD19/metabolismo , Imunoterapia Adotiva/métodos , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo , Mielofibrose Primária/metabolismo , Adulto , Citometria de Fluxo , Humanos , Interleucina-6/metabolismo , Masculino , Mielofibrose Primária/terapia , Receptores de Antígenos Quiméricos/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
16.
Pediatr Investig ; 4(1): 55-58, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32851343

RESUMO

INTRODUCTION: Neuroblastoma (NB) is the most common extracranial solid tumor among children. The 5-year event-free survival rate for high-risk (HR) NB is still poor, especially for patients with advanced NB with MYCN gene amplification. Chimeric antigen receptor T (CAR-T) cell therapy is a new treatment for HR-NB. CASE PRESENTATION: A 55-month-old boy with stage IV HR-NB received 4th-generation CAR-T cells that target disialoganglioside GD2, as consolidation maintenance treatment after intensive chemotherapy, surgery, and autologous stem-cell transplantation. As of February 2019, his CAR-T follow-up time was 37.5 months, indicating prolonged survival. Cranial MRI and ultrasound showed no mass; 123I-metaiodobenzylguanidine (123I-MIBG) scan was negative. CONCLUSION: GD2-CAR-T cells may be an effective treatment option for NB patients with MYCN amplification.

17.
Front Oncol ; 10: 685, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32528876

RESUMO

Secondary acute myeloid leukemia (sAML) is a high-risk AML evolving from heterogenous prior hematological disorders. Compared to de novo AML, sAML has even worse responses to current therapy and thus is associated with lower remission rates, inferior overall survival (OS) and higher relapse rates. Many efforts have been devoted to improving the overall but with limited success, and novel strategy is thus highly needed. Recent research has identified that CLL1 is highly expressed on AML leukemia stem cells and blasts cells but not on normal hematopoietic stem cells. In this case report, we treated a secondary AML patient with anti -CLL1 CAR-T therapy and achieved morphological, immunophenotypic and molecular complete remission for over 10 months. Although only one successful case is presented here, the anti-CLL1 CAR T-cells should be considered as another treatment option for secondary AML in the future.

18.
Am J Cancer Res ; 10(2): 674-687, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32195035

RESUMO

Since the prognosis for children with high-risk osteosarcoma (OS) remains suboptimal despite intensive multi-modality therapies, there is a clear and urgent need for the development of targeted therapeutics against these refractory malignancies. Chimeric antigen receptor (CAR) modified T cells can meet this need by utilizing the immune system's potent cytotoxic mechanisms against tumor specific antigen targets with exquisite specificity. Since OS highly expresses the GD2 antigen, a viable immunotherapeutic target, we sought to assess if CAR modified T cells targeting GD2 could induce cytotoxicity against OS tumor cells. We demonstrated that the GD2 CAR modified T cells were highly efficacious for inducing OS tumor cell death. Interestingly, the OS cells were induced to up-regulate expression of PD-L1 upon interaction with GD2 CAR modified T cells, and the specific interaction induced CAR T cells to overexpress the exhaustion marker PD-1 along with increased CAR T cell apoptosis. To further potentiate CAR T cell killing activity against OS, we demonstrated that suboptimal chemotherapeutic treatment with doxorubicin can synergize with CAR T cells to effectively kill OS tumor cells.

19.
Front Oncol ; 9: 1350, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31867275

RESUMO

Background: The therapeutic efficacy of chimeric antigen receptor (CAR) T-cells targeting CD19 has been illustrated in the treatment of diffuse large B-cell lymphoma (DLBCL). However, there is a 21-35% relapse rate after anti-CD19 CAR T-cell induced remission. In addition, CAR T-cell therapy has severe adverse reactions, such as cytokine release syndrome (CRS) and CART-related encephalopathy syndrome (CRES). Because of the potential mortality associated with severe CRES, patients with primary central nervous system lymphoma (PCNSL) are usually excluded from clinical trials involving CAR T-cell therapy. Here, we report a case of refractory and relapsed primary central nervous system diffuse large B-cell lymphoma (PCNS-DLBCL). Case Presentation: The patient is a 67-year-old male who was diagnosed with PCNSL in 2011. He achieved complete remission (CR) after receiving 6 cycles of temozolomide and high-dose methotrexate. In December 2016, he experienced his first relapse and was treated with surgery and multicourse chemotherapy. He achieved CR again after the treatment. However, he experienced a second relapse in August 2017. MRI revealed a residual mass of 26 mm*35 mm*30 mm on the right side of the post-operative cavity and stale hemorrhage in the left basal ganglia. After confirming the expression of CD19 and CD70 in his tumor samples, the patient was given lymphodepletion chemotherapy followed by infusion of 4th generation CD19-CAR T-cells (4SCART19) and 4th generation CD70-CAR T-cells (4SCART70). One month later, the patient had symptomatic improvement, and brain MRI showed CR. Both CART19 and CART70 cells were detected in the 10th month after CAR T-cell infusion. Notably, neither CRS nor CRES occurred during treatment and follow-up. To date, the patient has maintained disease-free survival with more than 17 months of follow-up. Conclusions: The results of this study indicate that combination of CD19- and CD70-specific CAR T-cells may effectively target PCNSL and maintain disease-free survival without inducing CRS or CRES. Therefore, central nervous system lymphoma is not an absolute contraindication for dual-target CAR T-cell therapy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...